Resource islands are vegetative formations in arid and semi-arid ecosystems that harbor microorganisms facing extreme conditions. However, there is a limitation in the knowledge of the agricultural biotechnological potential of microorganisms present in these islands. This study aimed to determine the capacity of Bacillus velezensis C3-3 and Cytobacillus sp. T106 isolates from resource islands to promote plant growth and control the phytopathogen Rhizoctonia solani. The bacteria were sequenced, and both grew at 50 °C, resisted 5% NaCl, withstood UV exposure, and grew in extreme pH conditions. Sixty-six genes in C3-3 and 71 in T106 were identified associated with plant growth promotion, and C3-3 was shown to promote leaf growth in lettuce plants. This promotional effect was associated with the production of indole-3-acetic acid (IAA), phosphorus solubilization, and the presence of genes related to the assimilation of rhizosphere exudates. Both strains inhibited R. solani through the production of volatile compounds and antagonism. Forty-five and 40 of these genes in C3-3 and T106, respectively, were associated with the production of proteases, lipases, siderophores, antimicrobial compounds, degradation enzymes, and secretion systems. Notably, Cytobacillus sp. has not been previously reported as a biocontrol agent. This work contributes to the evidence of the biotechnological potential of semi-arid region bacteria, offering prospects for improving agricultural production in areas with limiting conditions.