Multimodality nanoplatforms play a crucial role in advancing medical interventions by integrating multiple functionalities into a single system. However, issues like intricate production processes and biocompatibility persist. Herein, a facile synthesis of a biomaterial-based mesoporous nanocarrier, HAp:Nd+SPIONs@mSiO2 is reported. The nanohybrid with ∼100 nm average size, comprised of Nd-doped hydroxyapatite (HAp:Nd) nanophosphor, Fe3O4 superparamagnetic iron oxide nanoparticles (SPIONs), and mesoporous silica, exhibiting magneto-luminescent properties. The nanohybrid showed NIR to NIR photoluminescence properties important for deep tissue imaging. The mesoporous nanohybrid was loaded with Indocyanine green (ICG), a photosensitizer and photothermal dye, as a model drug (∼6 μg/mg of nanoparticles) with a high absorption stability retaining >75 % drug until 24 h incubation in pH 6 and 7.4, respectively. Nanoparticles demonstrated dual functionality by generating heat through magnetic and photonic stimulation, as well as producing reactive oxygen species (ROS) upon excitation with 808 nm light. In vitro assays on aggressive triple-negative breast cancer cells (MDA-MB-231) showed the high biocompatibility of nanohybrid with and without ICG, while a significant toxicity was seen after irradiation of NIR light due to ROS production. Noticeably, the nanohybrids also exhibit the ability to monitor temperature changes via Nd3+ associated NIR luminescence. The nanoplatform integrates clinically relevant components like hydroxyapatite, SPIONs, mesoporous silica and ICG, highlighting its potential for translational applications. The developed nanohybrids, with combined NIR-mediated photothermal and photodynamic effects, magnetic photothermal capabilities, and NIR/MR imaging, offer promise in addressing cancer heterogeneity and improving conventional treatments with reduced side effects.
Read full abstract