Abstract

Cancer photothermal therapy leverages the capability of photothermal agents to convert light to heat for cancer cell ablation and necrosis. However, most conventional photothermal agents (Au, CuS, Pd, mesoporous silica nanoparticles, and indocyanine green dye) either face scalability challenges or photobleached upon prolonged irradiation which jeopardizes practical applications. Here, asphaltenes-derived carbon dots (ACDs, 5nm) are rationally engineered as a low-cost and photostable photothermal agent with negligible in vivo cytotoxicity. The abundant water-solvating functional groups on the ACDs surface endows them with excellent water re-dispersibility that outperforms those of most commercial nanomaterials. Photothermal therapeutic property of the ACDs is mechanistically described by non-radiative transitions of excited electrons at 808nm via internal conversions and vibrational relaxations. Consequently, the ACDs offer cancer photothermal therapy in mice within 15 days post-exposure to one-time near infrared irradiation. This pioneering study showcases the first utilization of asphaltenes-based materials for cancer therapy and is expected to arouse further utilization of such materials in various cancer theranostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.