We analyze dynamic assignment problems where agents successively receive different objects (positions, offices, etc.). A finite set of n vertically differentiated indivisible objects are assigned to n agents who live n periods. At each period, a new agent enters society, and the oldest agent retires, leaving his object to be reassigned. We define independent assignment rules (where the assignment of an object to an agent is independent of the way other objects are allocated to other agents), efficient assignment rules (where there does not exist another assignment rule with larger expected surplus), and fair assignment rules (where agents experiencing the same circumstances have identical histories in the long run). When agents are homogenous, we characterize efficient, independent and fair rules as generalizations of the seniority rule. When agents draw their types at random, we prove that independence and efficiency are incompatible, and that efficient and fair rules only exist when there are two types of agents. We characterize two simple rules (type-rank and type-seniority) which satisfy both efficiency and fairness criteria in dichotomous settings.