At the tissue-scale and above, there are now well-established structure-property relationships that provide good approximations of the biomechanical performance of bone through, for example, power-law relationships that relate tissue mineral density to elastic properties. However, below the tissue-level, the individual role of the constituents becomes prominent and these simple relationships tend to break down, with more detailed theoretical and computational models are required to describe the mechanical response. In this study, a two-dimensional micromechanics damage-based representative volume element (RVE) of lamellar bone was developed, which included a novel implementation of a phase-field damage model to describe the behaviour of non-collagenous proteins at mineral-mineral and mineral-fibril interface regions. It was found that, while the stiffness of the tissue was governed by the relative proportion of extra-fibrillar mineral and mineralised collagen fibrils, the strength and toughness of the tissue in transverse direction relied on the interactions occurring at mineral-mineral and mineral-fibril interfaces, highlighting the prominence of non-collagenous proteins in determine fracture-based processes at this scale. While fractures tended to initiate in mineral rich areas of the extra-fibrillar mineral matrix, it was found that the presence of mineralised collagen fibrils at low density did not provide a substantial contribution to crack propagation behaviour under transverse loading. However, at physiological volume fraction (VfMCF=50%), different scenarios could arise depending on the relative strength value of the interphase around the MCFs (σfInterphaseMCF) to the interphase between individual minerals (σfInterphaseHA): (i) When γ=σfInterphaseMCFσfInterphaseHA<1, MCFs appear to facilitate crack propagation with MCF-mineral debonding being the dominant failure mode; (ii) once γ>1, the MCFs hinder the microcracks, leading to inhibition of crack propagation, which can be regarded as an energy dissipation mechanism. The effective fracture properties of the tissue also experience a sudden increase in fracture work density (J-integral) once the crack is arrested by MCFs or severely deflected. Collectively, the predicted behaviour of the model compared well to those reported through experimental and computational methods, highlighting its potential to provide further understanding into the mechanistic response of bone ultrastructure alterations related to the structural and compositional changes resulting from disease and aging.
Read full abstract