BackgroundThe intrinsic and extrinsic foot softtissue structures that apply force and support the medial longitudinal arch (MLA) have been implicated in the development of flat feet. However, the relationship between the changes in MLA height under increasing load and the morphological and mechanical properties of individual intrinsic and extrinsic foot soft tissue structures is not fully understood. Research questionTo examine the morphological and mechanical characteristics of the foot soft tissue structures in flat feet when subjected to loading. MethodsThis study consisted of two studies focusing on the extrinsic foot muscles (10 normal feet/11 flat feet) and intrinsic foot muscles (14 normal feet/13 flat feet). Images of the extrinsic and intrinsic foot muscles and plantar fascia (PF) under 10%, 50%, and 90% body weight conditions were obtained using ultrasound-based shear-wave elastography. ResultsThe cross-sectional area (CSA) of the peroneus brevis was larger in the flat-foot group than in the normal-foot group under all loading conditions. The CSAs of the intrinsic foot muscles (abductor hallucis, flexor digitorum brevis, and quadratus plantae) and thickness of the PF in the flat-foot group decreased significantly with increasing load. As for mechanical characteristics, the stiffness of the flexor digitorum longus and abductor hallucis was higher in the flat-foot group than in the normal group under high loading conditions. In addition, flat feet with greater flexibility tended to exhibit a greater decrease in PF thickness and smaller increase in stiffness. SignificanceExcessive stretching of the intrinsic foot muscles and PF occurs in flat feet, and excessive contraction of the flexor digitorum longus may counteract the excessive lowering of the foot arch. Therefore, it is necessary to promote the contraction of the intrinsic foot musculature in feet with greater flexibility of the MLA during loading.
Read full abstract