Tanacetum cinerariifolium was known to produce pyrethrins, but the mechanism of pyrethrin biosynthesis was largely unclear. The author showed that the nonmevalonate and oxylipin pathways underlie biosynthesis of the acid and alcohol moieties, respectively, and a GDSL lipase joins the products of these pathways. A blend of the green leaf volatiles and (E)-β-farnesene mediates the induction of wounding responses to neighboring intact conspecies by enhancing pyrethrin biosynthesis. Plants fight against herbivores underground as well as aboveground, and, in soy pulps, some fungi produce compounds selectively modulating ion channels in insect nervous system. The author proposed that indirect defense of plants occurs where microorganisms produce defense substances in the rhizosphere. Broad-spectrum pesticides, including neonicotinoids, may affect nontarget organisms. The author discovered cofactors enabling functional expression of insect nicotinic acetylcholine receptors (nAChRs). This led to understanding the mechanism of insect nAChR-neonicotinoid interactions, thus paving new avenues for controlling crop pests and disease vectors.
Read full abstract