Moderate wine consumption is associated with human health benefits (reduction of cardiovascular risk and neurodegenerative diseases, decrease of onset of certain cancers) attributed to a series of bioactive compounds, mainly polyphenols, with antioxidant power capable of counteracting the negative action of free radicals. Polyphenols are naturally present in the grapes, but an additional amount originates during winemaking. The aim of this work was to assess the ability of four commercial and two indigenous Saccharomyces cerevisiae strains to produce bioactive compounds (tyrosol, hydroxytyrosol, tryptophol, melatonin and glutathione) during alcoholic fermentation. In order to exclude the fraction of antioxidant compounds naturally occurring in grapes, the strains were inoculated in a synthetic must. At the end of fermentation the bioactive compounds were analysed by High-Performance Liquid Chromatography, while antioxidant activity was measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Moreover, freeze-dried samples, originating from the experimental wines, were used to perform ex-vivo assays on cultured cells (RAW 264.7 murine macrophages) with the aim to evaluate their antioxidant and anti-inflammatory activities. The results indicated that the production of the considered bioactive compounds is a strain-specific property; therefore, the different yeast strains utilized during fermentation have different capabilities to modify the antioxidant and anti-inflammatory properties of the wine.