The pandemic crisis has created significant challenges for small farms, leading to increased energy costs, higher prices for feed and nutrients, unreliable supplies of chemical fertilizers, and disruptions in product sales markets. These factors have collectively compromised the operational viability and economic sustainability of small-scale agricultural enterprises. To address these challenges, this paper explores the concept of a self-sufficient farming system, focusing on locally producing most of the resources needed to sustain operations and reduce dependence on external sources. A self-sufficient integrated pisciculture farming system is proposed and evaluated, promoting an autonomous circular model that prioritizes environmental sustainability. This system incorporates the integration of local livestock into fish diets, production of renewable energy sources, and efficient water and sludge management to reduce reliance on external resources. The detailed methodology used to evaluate sustainability indicators objectively demonstrates that the proposed system can be self-sustainable and autonomous; however, it requires considerable initial investments that can be recovered within at least six years. Optimizing the energy management plan can reduce daily power consumption by up to 25%. However, local conditions may challenge the efficiency of photovoltaic–hybrid energy production, requiring slight oversizing of the system. The research indicated that rearing carp with cereal-based feed mixtures produces growth results comparable to those achieved with commercially purchased feed. The indicators of resource efficiency, reliability, flexibility, productivity, environmental impact, and social impact were met as expected. The weakest indicator was the technology’s potential for scalability, due to its strong dependence on various regional factors.
Read full abstract