This study analyzed the change in and mechanisms of summer extreme precipitation in Southwest China (SWC) during 1979–2021. The trend in summer extreme precipitation showed an evident interdecadal mutation in the late 1990s; it decreased during 1979–1996 (P1) and increased during 1997–2021 (P2). It is observed that the moisture flux in SWC is more abundant in P2 than in P1. The South Asian high (SAH) and western Pacific subtropical high (WPSH) contributed to the change in extreme precipitation in SWC. Both the SAH and WPSH weakened in 1979–1996 and enhanced in 1997–2021. The enhanced SAH and WPSH are conducive to forming updrafts in SWC and transporting moisture from the Bay of Bengal (BOB) and South China Sea (SCS) into SWC. Further research found that the causes for the interdecadal variation of the SAH and WPSH are the anomalies of sensible heat flux (SSH) over the Tibetan Plateau (TP) and sea surface temperature (SST) in the tropical western Pacific–Indian Oceans. The SSH is the main energy source of troposphere air and an essential component of the surface heat balance because it can maintain the intensity and influence range of the SAH. The increasing SST stimulated strong upward motion and thus maintained the strength of the WPSH, which also made the WPSH extend westward into mainland China. This study also summarized local human adaptation to climate change. The use of advanced science and technology to improve monitoring and forecasting ability is an important measure for human society to adapt to climate change. At the same time, increasing the participation of individuals and social organizations is also an indispensable way to increase human resilience to climate change.
Read full abstract