In the presentp aper, we study the existence and non-existence results of a positive solution for the Steklov eigenvalue problem driven by nonhomogeneous operator $(p,q)$-Laplacian with indefinite weights. We also prove that in the case where $\mu>0$ and with $1<q<p<\infty$ the results are completely different from those for the usua lSteklov eigenvalue problem involving the $p$-Laplacian with indefinite weight, which is retrieved when $\mu=0$. Precisely, we show that when $\mu>0$ there exists an interval of principal eigenvalues for our Steklov eigenvalue problem.
Read full abstract