Unmanned aerial vehicles (UAVs) are extensively employed in pursuit, rescue missions, and agricultural applications. These operations necessitate substantial data and video transmission, requiring significant spectral resources. The unlicensed millimeter wave (mmWave) spectrum, especially in the 60 GHz frequency band, offers promising potential for UAV communications. However, WiGig users are the incumbent users of the 60 GHz unlicensed spectrum. Therefore, to ensure fair coexistence between UAV-based new radio-unlicensed (NR-U) users and WiGig users, unlicensed spectrum-sharing strategies need to be meticulously designed. Due to the beam directionality of the NR-U system, traditional listen-before-talk (LBT) spectrum sensing strategies are no longer effective in NR-U/WiGig systems. To address this, we propose a new cooperative unlicensed spectrum sensing strategy based on mmWave beamforming direction. In this strategy, UAV and WiGig users cooperatively sense the unlicensed spectrum and jointly decide on the access strategy. Our analysis shows that the proposed strategy effectively resolves the hidden and exposed node problems associated with traditional LBT strategies. Furthermore, we consider the sensitivity of mmWave to obstacles and analyze the effects of these obstacles on the spectrum-sharing sensing scheme. We examine the unlicensed spectrum access probability and network throughput under blockage scenarios. Simulation results indicate that although obstacles can attenuate the signal, they positively impact unlicensed spectrum sensing. The presence of obstacles can increase spectrum access probability by about 60% and improve system capacity by about 70%.
Read full abstract