Abstract

Reinforcement learning (RL) is applied for dynamic admission control and resource allocation in NextG radio access network slicing. When sharing the spectrum with an incumbent user (that dynamically occupies frequency-time blocks), communication and computational resources are allocated to slicing requests, each with priority (weight), throughput, latency, and computational requirements. RL maximizes the total weight of granted requests over time beyond myopic, greedy, random, and first come, first served solutions. As the state-action space grows, Deep Q-network effectively admits requests and allocates resources as a low-complexity solution that is robust to sensing errors in detecting the incumbent user activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.