Understanding the factors that influence COVID-19 transmission is essential in assessing and mitigating the spread of the pandemic. This study focuses on modeling the impact of air pollution and meteorological parameters on the risk of COVID-19 transmission in Western Cape Province, South Africa. The data used in this study consist of air pollution parameters, meteorological variables, and COVID-19 incidence observed for 262 days from April 26, 2020, to January 12, 2021. Lagged data were prepared for modeling based on a 6-day incubation period for COVID-19 disease. Based on the overdispersion property of the incidence, negative binomial (NB) and generalised Poisson (GP) regression models were fitted. Stepwise regression was used to select the significant predictors in both models based on the Akaike information criterion (AIC). The residuals of both NB and GB regression models were autocorrelated. An autoregressive integrated moving average (ARIMA) model was fitted to the residuals of both models. ARIMA (7, 1, 5) was fitted to the residuals of the NB model while ARIMA (1, 1, 6) was fitted for the residuals of the GP model. NB + ARIMA (7, 1, 5) and GP + ARIMA (1, 1, 6) models were tested for performance using root mean square error (RSME). GP + ARIMA (1, 1, 6) was selected as the optimal model. The results from the optimal model suggest that minimum temperature, ambient relative humidity, ambient wind speed, PM2.5, and NO2 at various lags are positively associated with COVID-19 incidence while maximum relative humidity, minimum relative humidity, solar radiation, maximum temperature, NO, PM load, PM10, SO2, and NOX at various lags have a negative association with COVID-19 incidence. Ambient wind direction and temperature showed a nonsignificant association with COVID-19 at all lags. This study suggests that meteorological and pollution parameters play a vital independent role in the transmission of the SARS-CoV-2 virus.
Read full abstract