Artificial water channels (AWCs) have been extensively explored to mimic natural proteins, which enables to effectively transport water while blocking ions. As one of the first AWCs, self-assembled I-quartets (HCx) have showcased high water-permselectivity that can be enhanced by improving their distribution and stability within membrane. The use of long alkyl chains (n>8) is constrained by their low solubility and aggregation. Herein, we considered cycloalkyl moieties, explored for the increase of the solubility favoring enhanced partition and/ for their self-assembly behaviors resulting the formation of effective stable water-channels with increased water permeability in bilayer membranes. This class of cycloalkyl-ureido-ethyl-imidazole amphiphilic (CxUH) channel could serve as a new reference for the effective design of self-assembled artificial water channels, it may give rise to the applications in desalination or in water treatment.
Read full abstract