SiO2 and Al2O3 are two important minerals that can affect the mechanical and metallurgical properties of sinter. This investigation systematically studied the influences of these minerals and revealed their functional mechanisms on sinter quality. Results showed that with an increasing Al2O3 content in sinter, the sintering indexes presented an improvement before the content exceeded 1.80%, while the quality decreased obviously after the content exceeded 1.80%. With an increasing SiO2 content, the sinter quality presented a decreasing tendency, especially when the content exceeded 4.80%. Consequently, the optimal content of Al2O3 was ≤1.80% and that of SiO2 was ≤4.80%. The evolution of the microstructure and minerals in sinter showed that enhancing the Al2O3 content increased the proportion of SFCA generated, which improved the sinter’s mechanical strength, while excessive Al2O3 led to the formation of sheet-like SFCA with weak mechanical strength. Increasing the content of SiO2 strained the formation of SFCA and promoted the formation of calcium silicate, the mechanical strength of which is lower than that of SFCA. The research findings will be useful in guiding practical sintering processes.