This study investigated the effect of consumption of table eggs enriched with n-3 polyunsaturated fatty acids (n-3 PUFA), lutein, vitamin E and selenium on microvascular function, oxidative stress and inflammatory mediators in patients after acute coronary syndrome (ACS). In a prospective, randomized, interventional, double-blind clinical trial, ACS patients were assigned to either the Nutri4 (N=15, mean age: 57.2±9.2 years), or the Control group (N=13; mean age 56.8±9.6 years). The Nutri4 group consumed three enriched hen eggs daily for three weeks, providing approximately 1.785 mg of vitamin E, 0.330 mg of lutein, 0.054 mg of selenium and 438 mg of n-3 PUFAs. Biochemical parameters, including serum lipids, liver enzymes, nutrient concentrations, serum antioxidant enzyme activity (catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD)), and markers of oxidative stress (thiobarbituric acid reactive substances (TBARS) and ferric reducing ability (FRAP)), were assessed before and after the dietary interventions. Additionally, arterial blood pressure, heart rate, body composition, fluid status, anthropometric measurements, and skin microvascular blood flow responses to various stimuli (postocclusive reactive hyperemia (PORH), acetylcholine- (AchID), and sodium nitroprusside- (SNPID)) were measured using laser Doppler flowmetry (LDF) throughout the study. The intake of Nutri4 eggs led to a significant reduction in LDL cholesterol levels, while the levels of total cholesterol remained within the established reference values. Consuming Nutri4 eggs resulted in a 12.7% increase in serum vitamin E levels, an 8.6% increase in selenium levels, and demonstrated a favorable impact on microvascular reactivity, as evidenced by markedly improved PORH and ACh ID. Nutri4 eggs exerted a significant influence on the activity of GPx and SOD, with no observed changes in TBARS or FRAP values. The consumption of Nutri4 eggs positively influenced microvascular function in individuals with ACS, without eliciting adverse effects on oxidative stress.
Read full abstract