Introduction: Clavicle fractures are among the most common in children, typically treated conservatively, with standard radiographs used to diagnose and monitor healing. Recently, infrared thermography (IRT) has been proposed as an alternative method for fracture detection, but no study has correlated the temperature changes during callus formation. Materials and Methods: Children aged 4–18 with X-ray-diagnosed clavicle fractures were included in the study. IRT measured temperatures above the fracture and contralateral healthy side on the 1st, 4th, 8th, 15th, and 22nd day after the injury. Along with IRT, an ultrasound was used to assess callus formation. Results: The study included 27 patients with an average age of 12.4 years, mostly boys. The left side was more often affected than the right side (33%). We found a correlation between callus formation and the ∆T. A maximum temperature difference of an average of 0.7 °C was noted during the proliferative phase of callus formation. After the formation of the fibrocartilaginous callus (4th to 8th day), the temperature above the fracture declined until it was equal (22nd day) to that of the healthy side. The average temperature difference between the broken and the healthy sides was statistically significant on the 4th and 8th days (during callus formation). Conclusions: The increased skin temperature above the fracture correlates with the inflammatory phase of bone healing. After the callus is visible on ultrasound, the temperature linearly drops with no statistical difference between the injured and the healthy sides. The standard protocol for clavicle fracture treatment typically involves using X-rays to assess callus formation during follow-up. IRT has shown potential in diagnosing callus formation in children with clavicle fractures, potentially reducing the need for traditional X-rays.
Read full abstract