Nuclear-encoded chloroplast small heat shock proteins (Cp-sHSPs) play important roles in plant stress tolerance due to their abundance and diversity. Their functions in Primula under heat treatment are poorly characterized. Here, expression analysis showed that the Primula Cp-sHSP gene, PfHSP21.4, was highly induced by heat stress in all vegetative and generative tissues in addition to constitutive expression in certain development stages. PfHSP21.4 was introduced into Arabidopsis, and its function was analysed in transgenic plants. Under heat stress, the PfHSP21.4 transgenic plants showed increased heat tolerance as shown by preservation of hypocotyl elongation, membrane integrity, chlorophyll content and photosystem II activity (Fv/Fm), increased seedling survival and increase in proline content. Alleviation of oxidative damage was associated with increased activity of superoxide dismutase and peroxidase. In addition, the induced expression of HSP101, HSP70, ascorbate peroxidase and Δ1-pyrroline-5-carboxylate synthase under heat stress was more pronounced in transgenic plants than in wild-type plants. These results support the positive role of PfHSP21.4 in response to heat stress in plants.
Read full abstract