Microbial-mineral interaction has a broad application prospect in the field of environmental remediation of organic pollutants. However, the disadvantages of long repair cycle and low repair rate limit its industrial application. In this study, natural hematite was used as an auxiliary material for soil remediation in a bio-electrochemical system. It was found that the power density of soil microbial fuel cell (SMFC) system composed of 2.0mm hematite was 2.889 mW/m2, which is 2.7 times compared with the blank group (1.068 mW/m2) in the particle size optimization experiment. A similarly increased power density (1.068 to 2.467 mW/m2) was observed when the hematite content changed from 0 to 20% in the concentration optimization experiment. Under 20% and 2.0-mm hematite condition, the phenol removal rate was closed to 99% after 7days, which is 1.9-folds compared with blank control (53%). These results suggest that addition of hematite enhances soil porosity and conductivity, and increases the number of electron acceptors in soil. These findings inspire that this economic and abundant natural mineral is expected to be a potential auxiliary material in the field of soil organic pollutant purification, and expand the understanding of interactions between hematite and microorganisms in nature.