Based on Navier-Stokes equations, combining the fifth-order weighted essentially non-oscillatory scheme with the adaptive structured grid refinement technique, the interactions between converging shock and annular SF<sub>6</sub> layers with different initial perturbation amplitudes and thickness are numerically investigated. The evolution mechanism of shock structure and interface are revealed in detail, and the variations of the circulation, mixing rate and turbulent kinetic energy are quantitatively analyzed. The dynamic mode decomposition method is used to analyze the dynamic characteristics of the vorticity. The results show that in the case with large initial perturbation amplitude, the transmitted shock wave forms Mach reflection structures both inside and outside of the inner interface of SF<sub>6</sub> layer, and multiple shock focusing phenomena occur in the center. After the transmitted shock wave penetrates the outer interface, the circulation increases faster, and the “spike” and “bubble” structure on inner interface develop faster, so that the amplitude of the inner and outer interfaces and the gas mixing rate increase. As for the case with larger thickness of the gas layer, the phase of the transmitted shock wave changes inside the layer, which forms “bubble” at the crest of the inner interface and “spike” at the trough. When the thickness of the gas layer decreases, the crest of the inner interface does not move inside after being impacted, and “spike” and “bubble” are generated in the late stage. The dynamic modes show that the main structure of vorticity and the exchange of positive and negative vorticity on the main structure are determined by the modes with weak growth and low frequency, but the modes with weak growth and high frequency determine rapid exchange of positive and negative vorticity at the interface in the cases with weak coupling effect.