Abstract

In the present paper, the influence of shock wave position on sonic transverse hydrogen micro-jets in supersonic crossflow is investigated. This study focuses on mixing and shock interaction of the hydrogen jet in a Mach 4.0 crossflow with various jet conditions. Flow structure and fuel/air mixing mechanism were investigated numerically. Parametric studies were conducted on the position of the shock wave by using the Reynolds-averaged Navier–Stokes equations with Menter׳s Shear Stress Transport turbulence model. Complex jet interactions were found in the downstream region with a variety of flow features dependent on the shock position. Results show a different flow structures than for a typical micro jet, with a location of the oblique shock on the flow of the hydrogen jet. According to the results, for oblique shock on the first jet, the mixing performance in high pressure ratio increases more than 20% in downstream. Furthermore, a significant reduction (up to 20%) occurs in the maximum concentration of the hydrogen jet at downstream when the intersection of incident shock is on the top of the last jets. Moreover, hydrogen-air mixing rate increase and the concentration of the hydrogen micro jet are uniformly distributed in the surface close to shock. Thus, an enhanced mixing zone occurs in the vicinity of the intersection of the jet and the shock wave.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.