Dasatinib, a tyrosine kinase inhibitor, has been shown to produce anti-inflammatory activity and impair vascular integrity in vivo, including during skin wound healing, potentially promoting the repair process. Given that dasatinib is a lipophilic small molecule capable of penetrating skin, topical dasatinib might provide benefits in wound healing. In the present study, we investigated the impact of dasatinib ointments in skin wound healing in mice. A full thickness excisional skin wound (4 mm diameter) was generated on the shaved dorsum of eight-week-old C57BL/6 mice. Dasatinib ointment (0.1 or 0.2% w/w) or ointment base was applied twice daily (every 12 h) for 10 days. Elizabethan collars were used to prevent animal licking. The wound size was monitored daily for 14 days. The results showed that dasatinib ointments, particularly 0.1% dasatinib, promoted a 16-23% reduction in wound size (p < 0.05) during day 2 to day 6 postinjury compared to controls. Immunohistochemistry analyses demonstrated a reduction in wound neutrophils (38% reduction, p = 0.04), macrophages (47% reduction, p = 0.005), and tumor necrosis factor-α levels (73% reduction, p < 0.01), together with an induction of vascular leakage-mediated fibrin(ogen) accumulation (2.5-fold increase, p < 0.01) in the wound during day 3 postinjury (an early phase of repair) in 0.1% dasatinib-treated mice relative to control mice. The anti-inflammatory and vascular hyperpermeability activities of dasatinib were associated with an enhanced healing process, including increased keratinocyte proliferation (1.8-fold increase in Ki67+ cells, p < 0.05) and augmented angiogenesis (1.7-fold increase in CD31+ area, p < 0.05), compared to the ointment base-treated group. Following treatment with 0.2% dasatinib ointment, minor wound bleeding and scab reformation were observed during the late phase, which contributed to delayed healing. In conclusion, our data suggest that dasatinib ointment, mainly at 0.1%, promotes the repair process by reducing inflammation and producing a local and temporal vascular leakage, leading to an increase in fibrin(ogen) deposition, re-epithelialization, and angiogenesis. Therefore, topical dasatinib might be a potential novel candidate to facilitate skin wound healing.
Read full abstract