A theoretical study of the equilibrium velocity of sound in the liquid-vapor mixture containing the close-packed layer of spherical particles has been carried out. Thermodynamic relations include a description of a non-stationary heat transfer between the mixture and particles in compression half-wave. The theoretical model allows explaining the experimentally observed significant reduction in the equilibrium velocity from its adiabatic value at the increase in vapor content of the mixture. The calculated results agree with experimental data obtained in the vertical channel at filtering the liquid-vapor mixture in a close-packed layer of spherical particles of borosilicate glass and steel.
Read full abstract