Combustion applications such as internal combustion engines are a major source of power generation. Renewable alternative fuels like hydrogen and ammonia promise the potential of combustion in future power applications. Most power applications encounter flame wall interaction (FWI) during which high heat losses occur. Investigating heat loss during FWI has the potential to identify parameters that could lead to decreasing heat losses and possibly increasing the efficiency of combustion applications. In this work, a study of FWI (CH4-air mixture) in a constant volume chamber, with a head-on quenching configuration, at high pressure in both laminar and turbulent conditions is presented. High-speed surface temperature measurement using thin junction thermocouples coupled with high-speed flow field characterization using particle image velocimetry (PIV) are used simultaneously to investigate the effect of pressure during FWI (Pint) and turbulence intensity (q) on the heat flux peak (QP). In laminar combustion regimes, it is found that QP is proportional to Pint0.35. The increase in q is shown to affect both Pint and QP. Finally, comparing QP versus Pint for both laminar and turbulent combustion regimes, it is found that an increase in q leads to an increase in QP (b = 0.76).
Read full abstract