An urgent issue of modern morphology is establishing a number of patterns of morphological changes and reactivity of connective tissue components of lungs in case of experimental sensitization with allergens. The aim is to estimate morphological features of histogenic differon cells in connective tissue of guinea pigs’ lungs after sensitization with ovalbumin. Materials and methods. Using morphometric and histological method, we have estimated the lung connective tissue of 48 male guinea pigs with experimental ovalbumin-induced allergic inflammation, simulated by subcutaneous sensitization and aeroallergization with ovalbumin. The number of fibrocytes, fibroblasts per 5000 μm2 and their ratio – fibroblast/fibrocyte coefficient were determined. Results. We have established the regularity of morphological changes dynamics in the cellular elements of pulmonary connective tissue. Experimental sensitization and inhalated allergization with ovalbumin leads to a statistically significant increase in the average number of fibroblasts and fibrocytes throughout the observation period in all experimental groups. It has been proved that the dynamics of cells has a multidirectional character, demonstrated by indicators of the fibroblast/fibrocyte coefficient, which shows the disproportion in the fibroblast/fibrocyte ratio and proves the tendency to the development of fibrosis in guinea pigs’ pulmonary connective tissue in case of experimental sensitization with ovalbumin. Conclusions. A gradual increase in the number of fibrocytes, against the background of a decrease in the number of fibroblasts is observed from the 23rd day to the completion of experimental sensitization with ovalbumin in the lungs of guinea pigs, compared with control group. A decrease of fibroblast/fibrocyte coefficient from 1.37 ± 0.03 in the early period to 0.82 ± 0.03 in the late period of the allergic inflammation demonstrates multidirectional nature of the dynamics in the number of connective tissue cells and indicates a tendency towards the development of fibrosis in pulmonary connective tissue.