Rare earth elements (REEs) pose significant environmental challenges due to the wastewater generated during their extraction. Developing efficient adsorbents with simple, economical and eco-friendly methods for removing and recovering REEs from wastewater is highly demanded but full of challenges. This study creates a novel adsorbent (g-C3N4/0.5DPal) for efficient REEs removal and recovery by integrating the low-grade mineral dolomite-palygorskite with g-C3N4 through a "one-pot" calcination method. Characterization techniques including SEM, XRD, FT-IR, XPS, etc., were employed to analyze the structure of the g-C3N4/0.5DPal composite. Batch adsorption experiments focusing on Gd3+ from among the REEs were conducted to evaluate the adsorption performance. The results reveal a remarkable 3.34 times increase in Gd3+ adsorption capacity of g-C3N4/0.5DPal (192.46 mg/g) compared to raw dolomite-palygorskite (57.62 mg/g) at 298 K, highlighting the effectiveness of the modification. The adsorption mechanism involves electrostatic interactions, surface complexation, and cation-π interactions. It is worth noting that g-C3N4 facilitates the conversion of dolomite to calcite during the preparation process, enhancing the Gd3+ adsorption of g-C3N4/0.5DPal. This work offers a promising solution for the removal and recovery of REEs and the high-value utilization of low-grade minerals, addressing both environmental concerns and resource sustainability.
Read full abstract