Continued exposure of cultured granulosa cells to follicle-stimulating hormone (FSH) induced: (i) a rise in apparent membrane microviscosity, as reflected by an increase in fluorescence polarization of the lipid-soluble probe, 1,6-diphenyl-1,3,5,-hexatriene; and (ii) a progressive decline in the cyclic AMP response to renewed challenge with the same hormone. Both changes were reduced or prevented by pretreatment of the cells with oleic or linoleic acid, agents which reduce membrane viscosity, but not by elaidic or palmitic acid which increase the rigidity of membrane lipids. Other agents that inhibited FSH-induced changes in membrane fluidity (gonadotropin-releasing hormone, actinomycin D and cycloheximide) also prevented desensitization to FSH. Cyclic AMP and cyclic GMP derivatives did not mimic the effects of FSH on apparent membrane viscosity or desensitization. Changes in membrane fluidity are unlikely to be the sole cause of desensitization since (i) pretreatment of the cells with fatty acids that increase lipid viscosity did not induce desensitization to FSH, and (ii) desensitization of granulosa cells to lutropin and prostaglandin E 2 by exposure to the homologous hormone was not attended by increased membrane viscosity. The experiments described provide the first example of a hormonally induced increase in the target cell apparent membrane viscosity.
Read full abstract