Diabetic nephropathy (DN) is characterized by an increase in urinary albumin excretion, diabetic glomerular lesions, and a decline in glomerular filtration rate (GFR). We assessed the expression of phosphatase and tensin homolog (PTEN), nuclear factor kappa-β (NF-κB), matrix metalloproteinase-2 (MMP2), and microRNA-181 in healthy controls (HC), individuals with type 2 diabetes mellitus (T2DM) without nephropathy, and those with DN. Our study investigated the association between these genes, insulin resistance (IR), and eGFR to gain insight into their roles in the pathogenesis and progression of DN. Anthropometric measurements and biochemical tests were conducted on HC (N = 36), T2DM (N = 38) patients, and DN (N = 35) patients. We used real-time polymerase chain reaction (RT-PCR) for whole blood gene expression analysis and performed bioinformatics analyses, including protein–protein interaction, gene ontology, and co-expression networks. We compared our expression data with other GEO-Microarray datasets. Our study highlights the role of IR in the progression of nephropathy in T2DM via the PTEN-Akt-mTOR signalling pathway. We also observed a decreasing trend in the expression of MMP2 and PTEN and an increasing trend in the expression of NF-κB and miR-181b-5p with the progression of nephropathy to the severe stage. The dysregulated expression of MMP2, PTEN, NF-κB, and miR-181b-5p in patients with T2DM contributes to the progression of T2DM to DN by aggravating IR, inflammation, accelerating basement membrane thickening, mesangial matrix expansion, and renal fibrosis.
Read full abstract