We present a computational investigation into the nature of bonds formed by f-elements in materials. The paper presents an example of the incorporation of rare earth elements (REE) and actinides in minerals derived from fluorapatite: Ca(10)(PO(4))(6)F(2). These minerals, called britholites, allow many substitutions on all three Ca, P, and F sites and are considered as potential host phases for radioactive elements separated from nuclear waste. REE and actinides have very similar physical and chemical properties, but REE are not radioactive and much more easily handled. REE are, therefore, very often used as a surrogate for actinides in experimental studies. The representative elements of rare earths and actinides chosen for this first investigation are cerium and uranium, respectively. We have studied all the various configurations of Ca(9)X(PO(4))(6)(-)(y)()(SiO(4))(y)()F(2), where X stands for Ce(3+), Ce(4+), U(3+), and U(4+), and y is equal to 1 and 2 for three-time and four-time charged cations, respectively. Calculations have been performed within the density functional theory (DFT) framework according to the computation scheme determined in a previous study. The analysis of the energies of the various configurations shows that the incorporation of all the cations considered stabilizes the apatitic structure. This stabilization, however, is greater for four-time charged cations than for three-time charged ones, which shows that Ce and U are both preferentially substituted in the +IV oxidation state. In addition, the substitution in one of the two cationic sites of the apatitic structure is always more favorable. Then, the geometry analysis shows a larger decrease in size of this cationic site for U than for Ce, as well as different volume variations for Ce and U substitutions in the two cationic sites. This cannot be explained by steric effects alone. Finally, the electronic density analysis yields three essential results: U and Ce form significantly covalent bonds, U forms bonds more covalent than Ce, and finally four-time charged cations form more covalent bonds than three-time charged ones. The comparison of these results with the formation enthalpies of the various phases shows a positive correlation between the covalence degree of the bonds formed by the f-element and the stability of the structure. In addition, our results prove that Ce- and U-bearing britholites exhibit very similar energetic, structural, and electronic properties. Ce, therefore, appears to be a good simulant for U.
Read full abstract