The functional interplay between tBID and phospholipids was investigated in this study. The binding of tBID to model membranes was increased by an incorporation of phosphatidylserine (PS) into the liposomes. Using limited proteolysis and mass spectrometry, two peptide regions, which correspond to Ser(100)-Arg(114) and His(89)-Arg(114) in BID, revealed the specific PS-binding site. tBID also decreased the light scattering values of PS-containing liposomes and increased the leakage of fluorescent dye encapsulated in vesicles, which suggest that tBID reduces membrane integrity by fragmentation. The membrane fragmentation by tBID was also observed using confocal and transmission electron microscopy. The activity of tBID paralleled results that were obtained with cardiolipin (CL)-containing membranes. However, other anionic phospholipids had little effect. CL- and PS-induced conformational changes of tBID were observed by circular dichroism and intrinsic fluorescence. CL and PS also stimulated the insertion of BID into lipid monolayers. tBID stimulated the leakage of Ca(2+) from purified microsomes and mitochondria in a protein concentration-dependent manner. In contrast, BID showed significantly reduced effects when compared to tBID in all of the experiments performed. These results suggest that tBID specifically interacts with PS as well as CL and decreases membrane integrity without the aid of other pro-apoptotic proteins.
Read full abstract