Coherent structure dynamics in turbulent flows are explored by direct numerical simulations of the Navier-Stokes equations for idealized vortex configurations. For this purpose, two dynamically significant coherent structure interactions are examined: (i) incompressible and compressible vortex reconnection and (ii) core dynamics (with and without superimposed small-scale turbulence). Reconnection is studied for two antiparallel vortex tubes at a Reynolds number (Re) of 103. Incompressible reconnection consists of three distinct phases: inviscid advection, bridging and threading. The key mechanism, bridging, involves the ‘cutting’ of vortex lines by viscous cross diffusion and their subsequent reconnection in front of the advancing vortex dipole. We conjecture that reconnection occurs in successive bursts and is a physical mechanism of cascade to smaller scales.
Read full abstract