Vertical core excitation energies are obtained using a combination of the ΔSCF method and the diagonal second-order self-energy approximation. These methods are applied to a set of neutral molecules and their anionic forms. An assessment of the results with the inclusion of relativistic effects is presented. For core excitations involving delocalized symmetry orbitals, the applied composite method improves upon the overestimation of ΔSCF by providing approximate values close to experimental K-shell transition energies. The importance of both correlation and relaxation contributions to the vertical core-excited state energies, the concept of local and nonlocal core orbitals, and the consequences of breaking symmetry are discussed.
Read full abstract