Abstract
The target dependence for projectile electron loss is investigated using experimental data taken from the literature. Impact energies range from a few tens of eV/u to tens of MeV/u. For energies less than several MeV/u, the target dependences are shown to be very similar, independent of projectile species and charge state. Overall, however, with increasing impact energy the cross-section dependence on the target nuclear charge systematically increases. It is shown that none of the existing cross-section target scaling models reproduce these features. A model, based on Born scaling and including both the antiscreening and screening contributions to projectile electron loss, is developed. With the inclusion of relativistic effects, which increase the contribution from both channels at high energies, and ''target saturation'' effects, which reduce the contribution from the screening term for heavy targets and lower impact energies, this model describes quite reasonably all available experimental data. A simple scaling formula that reproduces the measured atomic number and impact velocity dependences is provided. This formula is applicable for projectile electron loss in collisions with either atomic or molecular targets and for impact energies ranging from a few to tens of MeV/u.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.