Recently developed electronic preresonance stimulated Raman scattering (epr-SRS) microscopy, in which the Raman signal of a dye is significantly boosted by setting the incident laser frequency near the electronic excitation energy, has pushed the sensitivity of SRS microscopy close to that offered by confocal fluorescence microscopy. Prominently, the maintained narrow line-width of epr-SRS also offers high multiplexity that breaks the "color barrier" in optical microscopy. However, detailed understanding of the fundamental mechanism in these epr-SRS dyes still remains elusive. Here, we combine experiments with theoretical modeling to investigate the structure-function relationship, aiming to facilitate the design of new probes and expanding epr-SRS palettes. Our ab initio approach employing the displaced harmonic oscillator (DHO) model provides a consistent agreement between simulated and experimental SRS intensities of various triple-bond bearing epr-SRS probes with distinct scaffolds. We further review two popular approximate expressions for epr-SRS, namely the short-time and Albrecht A-term equations, and compare them to the DHO model. Overall, the theory allows us to illustrate how the observed intensity differences between molecular scaffolds stem from the coupling strength between the electronic excitation and the targeted vibrational mode, leading to a general design strategy for highly sensitive next-generation vibrational imaging probes.