Abstract
A novel way to induce ultrafast currents in molecular wires using two incident laser frequencies, omega and 2omega, is demonstrated. The mechanism relies on Stark shifts, instead of near-resonance photon absorption, to transfer population to the excited states and exploits the temporal profile of the field to generate phase-controllable transport. Calculations in a trans- polyacetylene oligomer coupled to metallic leads indicate that the mechanism is highly efficient and robust to ultrafast electronic dephasing processes induced by vibronic couplings.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.