We study the magnon spectrum in a thin ferromagnetic-superconductor heterostructure in the presence of a single superconducting vortex. We employ the Bogolubov–de Gennes Hamiltonian which describes the magnons in the presence of the stray magnetic field and the non-uniform magnetic texture induced by the vortex. We find that the vortex localizes magnon states approximately in the same way as a charge center produces electron bound states due to screened Coulomb interaction in the two-dimensional electron gas. The number of these localized states is substantially determined by the material parameters of the ferromagnetic film only. We solve the scattering problem for an incident plane spin wave and compute the total and transport cross sections. We demonstrate that the vortex-induced non-uniform magnetic texture in chiral ferromagnetic film produces a skew scattering of magnons. We explore the peculiarities of the quantum scattering problem that correspond to orbiting in the classical limit.
Read full abstract