Ammonia, as a hydrogen carrier and an ideal zero-carbon fuel, can be liquefied and stored under ambient temperature and pressure. Its application in internal combustion engines holds significant potential for promoting low-carbon emissions. However, due to its unique physicochemical properties, ammonia faces challenges in achieving ignition and combustion when used as a single fuel. Additionally, the presence of nitrogen atoms in ammonia results in increased NOx emissions in the exhaust. High-temperature selective non-catalytic reduction (SNCR) is an effective method for controlling flue gas emissions in engineering applications. By injecting ammonia as a NOx-reducing agent into exhaust gases at specific temperatures, NOx can be reduced to N2, thereby directly lowering NOx concentrations within the cylinder. Based on this principle, a numerical simulation study was conducted to investigate two high-pressure injection strategies for sequential diesel/ammonia dual-fuel injection. By varying fuel spray orientations and injection durations, and adjusting the energy ratio between diesel and ammonia under different operating conditions, the combustion and emission characteristics of the engine were numerically analyzed. The results indicate that using in-cylinder high-pressure direct injection can maintain a constant total energy output while significantly reducing NOx emissions under high ammonia substitution ratios. This reduction is primarily attributed to the role of ammonia in forming NH2, NH, and N radicals, which effectively reduce the dominant NO species in NOx. As the ammonia substitution ratio increases, CO2 emissions are further reduced due to the absence of carbon atoms in ammonia. By adjusting the timing and duration of diesel and ammonia injection, tailpipe emissions can be effectively controlled, providing valuable insights into the development of diesel substitution fuels and exhaust emission control strategies.
Read full abstract