BackgroundAccurate identification of gait events is crucial to reliable gait analysis. Heel rise, a key event marking the transition from mid-stance to terminal stance, poses challenges in precise detection due to its gradual nature. This leads to variability in accuracy across studies utilizing diverse measuring techniques. Research questionHow do different HR detection methods compare when assessed against the underlying heel motion pattern and visual detection across varying speed, footwear conditions, and individuals? MethodsLeveraging data from over 10,000 strides in diverse scenarios with 15 healthy subjects, we evaluated methods based on measurements from optical motion capture (OMC), force plates, and shank-mounted inertial measurement units (IMUs). The evaluation of these methods included an assessment of their precision and consistency with the heel marker's motion pattern and agreement with visually detected heel rise. ResultsOMC-based heel rise detection methods, utilizing the heel marker's vertical acceleration and jerk, consistently identified the same point in the heel motion pattern, outperforming velocity-based methods and our new position-based method resembling traditional footswitch-based heel rise detection. Variability in velocity and position-based methods derives from subtle heel rise variations after mid-stance, exhibiting individual differences. Our proposed IMU-based methods show promise by closely matching OMC-based accuracy. SignificanceThe results have significant implications for gait analysis, providing insights into heel rise event detection's complexities. Accurate HR identification is crucial for gait phase separation, and our findings, especially with the robust heel marker's jerk-based method, enhance precision and consistency across walking conditions. Moreover, our successful development and validation of IMU-based algorithm offer cost-effective and mobile alternative for HR detection, expanding their potential use in comprehensive gait analysis.