The 2-butenal oxide Criegee intermediate [(CH3CH═CH)CHOO], an isomer of the four-carbon unsaturated Criegee intermediates derived from isoprene ozonolysis, is characterized on its first π* ← π electronic transition and by the resultant dissociation dynamics to O (1D) + 2-butenal [(CH3CH═CH)CHO] products. The electronic spectrum of 2-butenal oxide under jet-cooled conditions is observed to be broad and unstructured with peak absorption at 373 nm, spanning to half maxima at 320 and 420 nm, and in good accord with the computed vertical excitation energies and absorption spectra obtained for its lowest energy conformers. The distribution of total kinetic energy released to products is ascertained through velocity map imaging of the O (1D) products. About half of the available energy, deduced from the theoretically computed asymptotic energy, is accommodated as internal excitation of the 2-butenal fragment. A reduced impulsive model is introduced to interpret the photodissociation dynamics, which accounts for the geometric changes between 2-butenal oxide and the 2-butenal fragment, and vibrational activation of associated modes in the 2-butenal product. Application of the reduced impulsive model to the photodissociation of isomeric methyl vinyl ketone oxide reveals greater internal activation of the methyl vinyl ketone product arising from methyl internal rotation and rock, which is distinctly different from the dissociation dynamics of 2-butenal oxide or methacrolein oxide.
Read full abstract