Effective emission control technologies and novel propulsion systems have been developed for road vehicles, decreasing exhaust particle emissions. However, work has to be done on non-exhaust traffic related sources such as tyre–road interaction and tyre wear. Given that both are inevitable in road vehicles, efforts for assessing and minimising tyre wear should be considered. The amount of tyre wear is because of internal (tyre structure, manufacturing, etc.) and external (suspension configuration, speed, road surface, etc.) factors. In this work, the emphasis is on the optimisation of such parameters for minimising tyre wear, but also enhancing occupant’s comfort and improving vehicle handling. In addition to the search for the optimum parameters, the optimisation is also used as a tool to identify and highlight potential trade-offs between the objectives and the various design parameters. Hence, initially, the tyre design (based on some chosen tyre parameters) is optimised with regards to the above-mentioned objectives, for a vehicle while cornering over both Class A and B road roughness profiles. Afterwards, an optimal solution is sought between the Pareto alternatives provided by the two road cases, in order for the tyre wear levels to be less affected under different road profiles. Therefore, it is required that the tyre parameters are as close possible and that they provide similar tyre wear in both road cases. Then, the identified tyre design is adopted and the optimum suspension design is sought for the two road cases for both passive and semi-active suspension types. From the results, significant conclusions regarding how tyre wear behaves with regards to passenger comfort and vehicle handling are extracted, while the results illustrate where the optimum suspension and tyre parameters have converged trying to compromise among the above objectives under different road types and how suspension types, passive and semi-active, could compromise among all of them more optimally.
Read full abstract