Land surface models have facilitated the estimation of soil moisture over a range of spatiotemporal scales. However, limitations in model parameterization and under-representation of anthropogenic processes restrict their ability to estimate local-scale soil moisture variability, especially over irrigated areas. Assimilation of satellite-based soil moisture retrievals into land surface models can be a viable approach to overcome these constraints, specially over highly irrigated countries such as India, where such applications are rare. Additionally, large-scale validation of modeled soil moisture has been limited over India till now due to lack of a representative station network. By assimilating Soil Moisture Active Passive (SMAP)-based estimates into the state-of-the-art Indian Land Data Assimilation System (ILDAS) and combining with a new soil moisture station network of more than 200 stations, this study demonstrates improved soil moisture estimations and capture of irrigation signals over the region. The Noah-MP land surface model is forced by multiple local and global meteorological datasets and Ensemble Kalman Filter (EnKF) is used for assimilation of soil moisture. Comparison of open-loop and data assimilated soil moisture against station soil moisture data shows relative spatial mean improvement of 0.0178 in correlation and 0.0029 m3/m3 in RMSE. Further statistical comparison with in-situ data has also shown better results over most of the stations, as evident from improved correlations and reduced unbiased RMSE after assimilation. Finally, the climatology of soil moisture over the different irrigation fractions reveals that data assimilated outputs over irrigated grid cells tend to have higher soil moisture during dry winter season, demonstrating the ability to capture irrigation signals. These findings quantify the value of data assimilation in improving soil moisture estimates and the ability to capture unmodeled processes such as irrigation, which lays the science groundwork for upcoming space missions such as NASA ISRO Synthetic Aperture Radar (NISAR).
Read full abstract