Porphyrin/phthalocyanine compounds with fascinating molecular structures have attracted widespread attention in the field of solar cells in recent years. In this review, we focus on the pivotal role of porphyrin and phthalocyanine compounds in enhancing the efficiency of solar cells. The review seamlessly integrates the intricate molecular structures of porphyrins and phthalocyanines with their proficiency in absorbing visible light and facilitating electron transfer, key processes in converting sunlight into electricity. By delving into the nuances of intramolecular regulation, aggregated states, and surface/interface structure manipulation, it elucidates how various levels of molecular modifications enhance solar cell efficiency through improved charge transfer, stability, and overall performance. This comprehensive exploration provides a detailed understanding of the complex relationship between molecular design and solar cell performance, discussing current advancements and potential future applications of these molecules in solar energy technology.
Read full abstract