This research proposes a dynamic reconfiguration model (DRM) and method for the distribution network, considering wind power, photovoltaic distributed generation (DG), and demand-side response. The reconfiguration goal is to minimize the total operating cost of the distribution network. The electricity purchase costs, DG operation costs, participation in demand response programs, network losses, and voltage deviations are selected to construct the optimization function. The DRM is established by clustered load data segments. An improved backtracking search algorithm incorporating a differential evolution learning strategy and adaptive chaotic elite search strategy is adopted to solve the DRM. The viability of the proposed method is validated by an IEEE 30-node simulation distributed system.
Read full abstract