There are active and passive methods used to improve heat transfer. One of the passive methods is utilising porous media with high heat transfer surface area. Porous media are divided into two groups: regular and irregular structures. One of the regular structures is triply periodic minimal surfaces (TPMS), which have been studied quite frequently recently. In this study, heat transfer and flow analysis of a Gyroid geometry, one of the most used TPMS in the literature, is investigated numerically considering the conjugate heat transfer conditions. A single porosity is considered (ε = 0.6), and aluminium, ceramic and PLA are selected for the heat exchanger material to examine the temperature change in the heat exchanger. To understand the different flow characteristics, Reynolds numbers (Reh) are assumed to be 19.12, 95.61 and 172.09. The fluid inlet temperature is assumed to be constant at 298.15 K, and the initial temperature of the heat exchanger is assumed to be constant at 278.15 K to be consistent with the regenerative heat recovery temperature difference in ventilation standards. Nu numbers under different operating conditions are compared, and it is the ceramic material with low thermal diffusivity is at the highest level despite its low thermal conductivity. At the highest Re number, it provided approximately 6% better heat transfer than the aluminium heat exchanger.