Detecting salient objects in RGB-D images attracts more and more attention in recent years. It benefits from the widespread use of depth sensors and can be applied in the comprehensive understanding of RGB-D images. Existing models focus on double-stream networks which transfer from color stream to depth stream, but depth stream with one channel information cannot learn the same feature as color stream with three channels information even if HHA representation is adopted. In our works, RGB-D four-channels input is chosen, and meanwhile, progressive parallel spatial and channel attention mechanisms are performed to improve feature representation. Spatial and channel attention can pay more attention on partial positions and channels in the image which show higher response to salient objects. Both attentive features are optimized by attentive feature from higher layer, respectively, and parallel fed into recurrent convolutional layer to generate side-output saliency maps guided by saliency map from higher layer. Last multi-level saliency maps are fused together from multi-scale perspective. Experiments on benchmark datasets demonstrate that parallel attention mechanism and progressive optimization operation play an important role in improving the accuracy of salient object detection, and our model outperforms state-of-the-art models in evaluation matrices.