This study focuses on developing, characterizing, and evaluating lycopene nanomicelles formulations for their therapeutic potential in treating acute inflammation and obesity. Lycopene, a hydrophobic carotenoid with potent antioxidant, anti-inflammatory, and anticancer properties, faces challenges in bioavailability due to its poor solubility. To address this, the study utilized nanocarrier systems like liposomes, nanoparticles, and nanoemulsions to enhance the solubility, stability, and bioavailability of lycopene. The lycopene nanomicelles demonstrated significant anti-inflammatory and anticancer activities through multiple mechanisms. It inhibited the NF-κB pathway, reducing the expression of pro-inflammatory mediators, and modulated apoptotic pathways, leading to increased apoptosis and reduced cell proliferation in cancer cells. Furthermore, lycopene enhanced phase II detoxifying enzymes activity, interfered with gap junction communication, and potentially improved DNA repair mechanisms, contributing to its anticancer efficacy. In vivo studies revealed that lycopene nanomicelles effectively reduced leukocyte and neutrophil counts in an acute inflammation model, especially at higher doses, highlighting its potential as a nanodrug for inflammation management. However, the study found no significant alteration in triglyceride levels, indicating a need for further investigation into the effects of lycopene and its nanostructured forms on lipid metabolism. Biochemical analyses showed variations in liver enzyme levels, suggesting protective effects on the liver but also indicating potential pancreatic activity or stress and low glucose levels. These findings underscore the necessity for comprehensive safety evaluations. Overall, this research underscores the promising therapeutic applications of lycopene nanomicelles in inflammation and cancer while emphasizing the importance of addressing safety and metabolic effects for effective clinical translation.
Read full abstract