Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are distinct developmental disorders caused by absence of paternal or maternal contributions of the chromosome region 15q11-q13, resulting from deletions, uniparental disomy (UPD), or rare imprinting mutations. Molecular cytogenetic diagnosis is currently performed using a combination of fluorescence in situ hybridisation (FISH), DNA polymorphism analysis, and DNA methylation analysis. Only methylation analysis will detect all three categories of PWS abnormalities, but its reliability in tissues other than peripheral blood has not been examined extensively. Therefore, we examined the methylation status at the CpG island of the small nuclear ribonucleoprotein associated polypeptide N (SNRPN) gene and at the PW71 locus using normal and abnormal lymphoblast (LB) cell lines (n = 48), amniotic fluid (AF) cell cultures (n = 25), cultured chorionic villus samples (CVS, n = 17), and fetal tissues (n = 18) by Southern blot analysis with methylation sensitive enzymes. Of these samples, 20 LB cell lines, three AF cultures, one CVS, and 15 fetal tissues had been previously diagnosed as having deletions or UPD by other molecular methods. Methylation status at SNRPN showed consistent results when compared with FISH or DNA polymorphism analysis using all cell types tested. However, the methylation pattern for PW71 was inconsistent when compared with other tests and should therefore not be used on tissues other than peripheral blood. We conclude that SNRPN, but not PW71, methylation analysis may be useful for diagnosis of PWS/AS on LB cell lines, cultured amniotic fluid, or chorionic villus samples and will allow, for the first time, prenatal diagnosis for families known to carry imprinting centre defects.