The North China Plain (NCP) is one of China's most important social, economic, and agricultural regions. Currently, the Plain has 17,950 thousand ha of cultivated land, 71.1 percent of which is irrigated, consuming more than 70 percent of the total water supply. Increasing water demands associated with rapid urban and industrial development and expansion of irrigated land have led to overexploitation of both surface and the ratio of groundwater resources, particularly north of the Yellow River. In 1993, the ratio of groundwater exploitation to recharge in many parts of the NCP exceeded 1.0; in some areas, the ratio exceeded 1.5. Consequently, about 1.06 million ha of water-short irrigated areas in the NCP also have poor water quality. Persistent groundwater overexploitation in the northern parts of the NCP has resulted in water-level declines in both shallow and deep aquifers. According to data from 600 shallow groundwater observation wells in the Hebei Plain, the average depth to water increased from 7.23 m in 1983 to 11.52 m in 1993, indicating an average water-table decline of 0.425 m/year. Water table declines are not uniformly distributed throughout the area. Depletion rates are generally greatest beneath cities and intensively groundwater-irrigated areas. Water-table declines have also varied over time. With the continued decline of groundwater levels, large depression cones have formed both in unconfined and confined aquifers beneath the Hebei Plain. Groundwater depletion in the NCP has severely impacted the environment. Large tracts of land that overlie cones of depression have subsided, seawater has intruded into previously freshwater aquifers in coastal plains, and ground-water quality has deteriorated due to salinization, seawater intrusion, and untreated urban and industrial wastewater discharge. In order to balance groundwater exploitation with recharge, the major remedial measures suggested are to strengthen groundwater management, to raise water use efficiency, to adjust the water-consumed structure, and to increase water supply
Read full abstract