In response to the global COVID-19 pandemic, nations implemented lockdown measures to contain the virus. This study assessed air pollution levels during and after lockdowns, focusing on the following heavily affected locations: Oulu and Helsinki in Finland, Paris in France, Madrid in Spain, Milan in Italy, and Wuhan in China. Air Quality Index (AQI) data from these locations over two years were analyzed to understand the effects of lockdowns. The study compared COVID-19 lockdowns in these six cities with SARS-CoV-2 measurements using statistical methods. Variations in outdoor pollutants were evaluated through tests, revealing significant differences. Parametric analyses and regression were employed to study the impacts of lockdown measures on pollution and their relationships. The study comprehensively analyzed the effects of COVID-19 lockdowns on air quality, identifying differences, quantifying changes, and exploring patterns in each city. Pollutant correlations varied among cities during the lockdowns. Regression analysis highlighted the impact of independent variables on pollutants. Decreases in NO2 were observed in Helsinki, Madrid, Oulu, Paris, and Milan, reflecting reduced traffic and industrial activities. Reductions in PM2.5 and PM10 were noted in these cities and in Wuhan, except for O3 levels, which increased. The reduction in human activities improved air quality, particularly for NO2 and PM10. Regional variations underscore the need for tailored interventions. The study observed a substantial decrease in both PM2.5 and NO2 levels during the COVID-19 lockdowns, indicating a direct correlation between reduced human activities, such as transportation and industrial operations, and improved air quality. This underscores the potential impact of environmental measures and suggests the need for sustainable practices to mitigate urban pollution.